inst.eecs.berkeley.edu/~eecs251b

EECS251B : Advanced Digital Circuits and Systems

Lecture 19 – SRAM

Borivoje Nikolić

NVIDIA Announces New GPU Architecture

March 17, 2024. Blackwell-architecture GPUs pack 208 billion transistors and are manufactured using a custom-built TSMC 4NP process. All Blackwell products feature two reticle-limited dies connected by a 10 terabytes per second (TB/s) chip-to-chip interconnect in a unified single GPU.

https://www.nvidia.com/en-us/data-center/technologies/blackwellarchitecture/

Announcements

- Project
 - Midterm reports due tomorrow!
 - Preliminary design review after Spring break
- Homework 3 due tomorrow
 - Quiz 3 after Spring break
- Lab 5 posted today

SRAM

6-T SRAM Cell

AXL PR NR NR NR NL PL AXR Long Cell Topology

 $(W/L)_{NL} > (W/L)_{AXL}$

SRAM Cell Design Trends

Cell in 90nm (1µm²) Cell in 32nm (0.171µm²)

- Key enabling technology: STI
- Impact: Increased cell density

SRAM Cell Trends (22nm)

 $0.092 \mu m^2$ cell in 22nm from Intel (IDF'09)

planar

A little analysis by using a ruler:

- Aspect ratio 2.9
- Height ~178nm, Width ~518nm
- Gate ~ 45nm (Lg is smaller for logic)

0.346µm² cell in 45nm from Intel (IEDM'07)

EECS251B L19 SRAM

22nm SRAM – Discrete Widths

• FinFET cell design

High-Density Cell

Low-Voltage Cell

(PD:PG:PU)

(PD:PG:PU)

E. Karl, ISSCC'12

14nm SRAM

- Aspect ratio ~2.5
- Cell area = 0.05um²
 - Height = 140nm (2 gate p)
 - Width = 350nm
 - Lg \sim 32nm (longer than for logic)

10nm SRAM

- High-Density Cell (HDC) (1:1:1 (PU:PG:PD)
- Low-Voltage Cell (LVC)
 1:1:2 (PU:PG:PD)

LVC 0.0367 μm²

Guo, ISSCC'18

2CPP = 108nm

 $Lg \sim 20 nm$

SRAM: Assist Circuits

Basic Ideas

- Dynamically change voltages
- Negative BL helps with writing
- Lower VDD (V_{CELL}) helps with writing
- Higher WL helps with writing, lower hurts
- Lower WL helps with read, higher hurts

• Half-select condition: WL selected for write, but write operation is masked (BLs stay high)

Impact on performance

Zimmers TGASA2012

SRAM In Practice

• 7nm AMD Zen2 (Singh, ISSCC'20)

SRAM In Practice

• 7nm AMD Zen2 (Singh, ISSCC'20)

SRAM Peripheral Circuits

Peripheral Circuits in SRAM

- Decoders (and pre-decoders)
- Column circuitry: read, write, multiplex, mask
- Write assist techniques
- Read assist techniques
- Redundancy
- BIST
- ECC
- Power management

Sense-Amp Trigger

- Sense-amp trigger needs to be timed carefully
 - Too early: Incorrect evaluation
 - Too late: Unnecessary timing margin
- Problem: Delay based on inverter chains does not track the delay of the memory cell

Aside: Delay Lines, Replicas and Time Amplification

- We will encounter it several times in this course
 - Used in a wide range of mixed-signal circuits
- A simple delay line

Time-to-digital converter (TDC)

Start-Stop difference read out as a thermometer-coded binary value

Resolution set by inverter delay

Sub-inverter delays are hard to generate Small α requires large area

Lee, Abidi, JSSC 4/08

Sense-Amp Triggering

• Replica bitline

Block decoder

Replica delay tracks better across corners But still mistracks across a wide range of supplies

Amrutur, Horowitz, JSSC 8/98

Time Amplification

• Time amplified through metastability (by using setup time characteristics)

Lee, Abidi, JSSC 4/08

Time amplifier

 $T_{out} > T_{in},$ Adjustable by T_{off} , C

EECS251B L19 SRAM

Voltage Scaling: Multiplicative Replica Bitline

Conventional replica

n replica cells discharging replica BL in parallel to reduce the current/cell variation by \sqrt{n}

Threshold for discharge is set accordingly to $V_{DD} - nV_{os}$ Limits n to ~2-4

Voltage Scaling: Multiplicative Replica Bitline

Multiplicative replica

- Programmable replica delay
- Multiplicative replica scales the delay, w/o increasing variance correspondingly

Forward path digitizes SAEi to CK delay Backward path multiplies

Redundancy and ECC

Redundancy and ECC

- Redundancy
 - Spare columns (or rows)
 - Selected at test via eFuse
 - Possible to dynamically program redundancy

• ECC

- Error detection/correction codes
- Parity
- SECDED
- DECTED

Redundancy

• Principle

Columns

Rows

Horiguchi, Itoh, Springer 2011.

McPartland, CICC'00.

EECS251B L19 SRAM

Redundancy

• Effectiveness (Bickford, 2008)

Figure 1: Modeled Yield impact comparison for 65 nm SRAM complier. Vmin cell fail rate used in analysis shown in the left chart is 5.10 sigma. Vmin cell fail rate used in the analysis shown in the right chart is 5.20 sigma. 147 Kbit segment is a standardized array size block segment used for comparison purposes

Soft Errors

- From packaging and cosmic rays
- Packaging:
 - Lead ore contains Po-210 -> (5 days) -> Bi-210 -> (22.3 years) -> Pb-210
 - Or Po-210 -> (138.4 days) -> Pb-210
 - Need 'old lead'
- Cosmic rays
 - Large particles collide with Earth's atmosphere to produce alpha (and other) particles

Error Correction

- Parity Single Error Detection (SED)
 - $\mathbf{p} = \mathbf{d}_7 \oplus \mathbf{d}_6 \oplus \mathbf{d}_5 \oplus \mathbf{d}_4 \oplus \mathbf{d}_3 \oplus \mathbf{d}_2 \oplus \mathbf{d}_1 \oplus \mathbf{d}_0$

- Single Error Correction Double Error Detection (SECDED)
 - Hamming codes with additional parity

- Double Error Correction Triple Error Detection (DECTED)
 - BCH codes higher decoding complexity

Multi-bit Errors

Kawahara, ISSCC'07 tutorial

Multi-bit Errors

Multi-bit Errors

Multi-bit Errors: Interleaving

6T SRAM Alternatives

- Read circuit?
- Interleaving?

- Dual-port read/write capability (register-file-like cells)
- N0, N1 separates read and write
 - No Read SNM constraint
 - Half-selected cells still undergo read
- Stacked transistors reduce leakage

L. Chang, VLSI Circuits 2005

eDRAM

Barth, ISSCC'07, Wang, IEDM'06

Process cost: Added trench capacitor

strap BOX 100000000000000 aherentre alle alle DT Pre-Charg 1-6 wl0 wl1 1.4 Write '1' Write '0' 1-2 rbl 1.0 Volts <u>d</u>N Ø. 8 strong '1' E Ibl s Ø - 6 node 0.4 0.2 node strong '0' ы -ø. 6.0 Sec. -9 6.B 7.2 7.6 0.0 Time(ns) ... 8.4 0.0 9.2 9.6 Nominal Process, 1v, 85c 1.8, -Charge 1-6 wl0 wl1 1.7 Read '1' Read '0' Ę 1.2 161 lbl Volts 1.6 Ø.8 е.ь) weak '1' node ø.4 weak '0' node ø. z lbl -0.2 10.4 10.0 11.2 12.0 12.4 11.ь 12.0 13.2 13.6 14.0 Time (ns) SETP fires, refreshing '0'

Column Switch Charge Share

RBL

A/RI

Crosspoint Memories

• Barrett, IRE Trans. Comp. 1961.

Fig. 2—Memory structure. I_1 and I_2 are access drive currents to core-selection switch. Presence or absence of a magnet over a twistor-strip solenoid crosspoint yields a "zero" or "one." Signals observed between twistor and return wire.

Crosspoint Memories

Amorphous semiconductors: jury still out56Designing low-noise bipolar amplifiers82The big gamble in home video recorders89

A McGraw-Hill Publication September 28, 1970

- Neale, Nelson, Moore, Electronics'70
 - 16 x 16 array (256b) of 'read-mostly memory'

Crosspoint Memory

- Four modes
 - Form

• Set

- Reset
- Read

3D Crosspoint Arrays

Kau, IEDM'09

Si-Substrate

(

• Yeh, JSSC'15

Crosspoint Arrays

• Read and sneak currents

Bae, TED 4/17

Summary

- SRAM periphery
 - Decoders
 - Assist circuits
 - Sense amp timing replicas
- 6-T SRAM alternatives
 - 8-T SRAM
 - eDRAM
 - Crosspoint arrays (e.g. RRAM)

Next Lecture

- Spring break
- Low power design